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REVIEW ARTICLE 

Random surfaces: from polymer membranes to strings 

J F Wheater 
Department of Physics, Theoreticd Physics, 1 Keble Road, Oxford OX1 3NP. UK 

Received 17 June 1993 

Abstract I review the state of howledge about random surface ensembles in continuous 
embedding spaces and their possible role in defining swings in arbitrary dimensions. The 
application of rigorous statistical mechanics, approximate calculation and numerical simulation 
is described. 

1. Introduction 

The subject of random surfaces pervades much of theoretical physics. In 1970 Nambu [I ]  
formulated the theory of a one-dimensional object, the string, propagating in spacetime and 
in so doing sweeping out a two-dimensional object, the world sheet. The interest at that time 
was in the properties of hadronic elementary particles [2]; many years later strings became 
fashionable as a theory of everything and Pofyakov’s quantized string [3] in Euclidean 
spacetime was reformulated as a problem in the statistical mechanics of random surfaces 
[GI. In 1973 Helfrich [7] was concerned with the membranes which enclose biological 
cells and sometimes exhibit remarkable fluctuations [S-101. Subsequently many apparently 
disparate physical systems have been formulated in terms of the statistical mechanics of two- 
dimensional surfaces embedded in a space of higher dimension. The boundaries between 
domains of differently oriented spins in the three-dimensional king model are surfaces 
and the entire partition function can be rewritten as a sum over the domain boundaries 
rather than the original spins [Il l .  In three dimensions, the strong-coupling expansion of 
lattice gauge theories can be written as a sum over surfaces [121 while the large-N limit of 
S U ( N )  gauge theories is also related to the string [13]. Apart from biological membranes, 
there are many real two-dimensional objects in condensed-matter systems, such as the 
interface between two phases [14], whose connection to surfaces is obvious. In all of 
these systems not just one particular surface but a whole ensemble of possible surfaces is 
involved; hence the word ‘random’ in the title refers to annealed (rather than quenched) 
randomness. 

With such wide-ranging applications it is natural to try to abstract the essential features 
of the description in terms of random surfaces and to reduce them to a small number of 
classes. The idea of universality has proved to be a powerful one in statistical physics 
and ultimately an understanding of the universality classes of random surfaces is our aim. 
Broadly speaking, random surface models have been formulated in three distinct ways. In 
the first approach the whole of space is discretized into, for example, a cubic lattice; the 
surfaces are then built up out of a set of elementary squares, or plaquettes, of the lattice with 
neighbouring squares in the surface sharing a link of the lattice. These models, sometimes 
called ‘plaquette surfaces’, are natural if ones starting point is an Ising model or a lattice 
gauge theory. In the second approach only the surface itself is discretized, by drawing 
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3324 J F Wheater 

a two-dimensional lattice upon it, while being allowed to move continuously in three- 
dimensional space; this formulation is somewhat more natural from the point of view of 
strings or polymerized membranes. The third approach does not discretize the system at all 
and deals only with the effective field theories which are supposed to characterize the long- 
distance properties of the surface. In a sense this approach is derivative in that these models 
have ultra-violet divergences which need regularizing and often have interesting behaviour 
at values of their coupling constants too large for perturbation theory to be reliable; the 
discretized models provide a consistent non-perturbative ultra-violet regularization. In most 
cases our aim is to discover which continuum effective field theory describes the non-trivial 
long-distance properties of the surface, if indeed it has any. If universality for surfaces is 
anything like that for other systems we might expect that the two different discretizations 
will, provided the models have certain features in common, lead to the same continuum 
effective field theory. 

Even after reducing all the physically interesting systems to a smaller set of models the 
subject is still too vast to be covered adequately in one short article. This article describes the 
formulation in which the surface is discretized but the embedding space remains continuous 
with particular emphasis on its relevance to strings. I have tried to include sufficient detail 
that it will, I hope, help someone new to the field get started. There are a number of 
references which provide access to those areas omitted from this article. The situation up 
to 1989 is well covered in [15] while the closely related subjects of quantum gravity and 
matrix models are reviewed in [16,17]. For recent progress on plaquette surfaces see [I81 
and references therein. 

Figure 1. Segment of a crystalline surface. 

2. The discretized models 

The basic models can be developed in a straightforward way by considering first a thin 
flexible sheet in vacuo. It has thermal partition function 

where j3 is the inverse temperature, S the energy and C represents all configurations of 
the surface. To specify what the sum over configurations means, a microscopic description 
of the sheet is useful. Suppose that it is actually made of elastic links (which might be 
chain molecules) joined together in a fixed regular triangular-lattice pattern (hence the name 
crystalline surface) as shown in figure 1 and that altogether there are N vertices labelled by 
(i = 1,. . . , NI. The two-component lattice vector denotes the location of site i relative 
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Figure 1. Sequence of configurations of increasing splkyness but constant area. 

to some arbktrary fixed site. The configuration of the surface is defined by the position 
vectors (X(& ), i = 1,. . . , N }  of the vertices in three-dimensional space; when there is 
no danger of confusion we will use the abbreviated notation X ( i )  for X(& ). (Sometimes 
the embedding space has dimension D different from three, in which case X becomes a 
D-component vector.) Provided the surface is allowed to self-intersect without hindrance 
(sometimes called a phantom surface) then the sum over configurations is simply given by 
integrating over all the possible locations of the vertices so 

The role of the delta function is to suppress the translational zero mode of the surface. 

this directly in terms of the surface tension U as 
The simplest contribution to S arises fiom the elastic energy and it is tempting to write 

where A is the area. Such a model has a fundamental problem first discussed by Ambjprrn 
et al [4]. Consider the sequence of configurations shown in figure 2; as the spike is pulled 
further out of the plane its area can be kept fixed by contracting the base. Because there 
are N sites, for every flat surface of area A there will be N surfaces with one infinite spike, 
N(N - 1)/2 with two infinite spikes and so on. The partition function Z is dominated by 
surfaces with infinite spikes! Ambj0rn et a1 gave a rigorous proof that this is so and that, 
depending on the connectivity of the lattice, either Z itself or its higher moments are infinite 
even for finite N .  According to the picture of a network of chain molecules it is not really 
surprising that something has gone wrong because the true elastic energy of the system is 
given not by U A  but by 

where (ij) denotes the link running between vertices i and j and l j j  its extension (we have 
scaled the elastic constant to 1 which is always possible, see section 5.1). Now the elastic 
energy gets very big for the spikey configurations and they are suppressed. It is actually 
convenient to suppose that the links have zero natural length so that ljj becomes the length 
of the link and then 
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Now, when all the molecules have much the same length the triangles are almost equilateral 
and have area - l 2  so that SO - So and for smooth surfaces we recover the usual 
macroscopic description in terms of surface tension. An alternative formulation of the 
elastic energy is the so-called tethered potential 1191. SG is replaced by 

where 

i fx  c a  
i f x > a  

V ( x )  = (7) 

All the available evidence suggests that So and ST are in the same universality class; 
however, the former is easier to handle analytically and has a more natural correspondence 
with the continuum models that we will discuss later. 

Figure 3. A fold dong X-Y does not cost elastic energy 

As it stands, our model still allows some distortions of the surface with no energy 
cost. For example, the folding of a flat surface along the line X-Y marked in figure 3 
does not stretch any links and so does not increase the elastic energy. Now there are many 
configurations having the same elastic energy but folded up in different ways so the partition 
function (and hence the physics of the model) is dominated by surfaces which are all folded 
u p a s  we will see in section 5.1 the surfaces are crumpled. This can be counteracted 
by adding an energy which increases as the bending angle increases as would be expected 
of a real rubber sheet. A simple way of modelling this is to add a contribution to the 
energy 

K 
-Sec B 

where Se, denotes the extrinsic curvature given by 

where AA,Aav are the unit normal vectors of the triangles sharing the link (ij) [19]. 
The coupling constant K is often called the bending rigidity. The more rapidly the 
direction of the unit normals to the surface changes as we move along the surface, the 
higher the extrinsic curvature. Thus the role of S, is to suppress the tendency of the 
surface to crumple up. There are other ways of writing S, on a lattice which are at 
first sight equivalent to (9) when applied to surfaces which are nearly smooth [20,21]. 
In some cases it has been shown that when applied to very rough surfaces they suffer 
from pathologies which prevent them h m  acting to smooth the surface out [2223]. 
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However, there are some modifications which are not manifestly sick but which have 
not yet been subjected to the same exhaustive study as (9). We do not have space to 
discuss them here and simply refer the reader to the original references [24,25]. For the 
purposes of this article the partition function of the crystalline membrane is defined to 
be 

The defining difference between a crystalline membrane and a fluid one is that in the 
latter the links (molecules) are not tied to their neighbours in a fixed pattern but are instead 
free to move through the surface. A simple way to implement this in an equilibrium 
statistical mechanics context is to sum over all ways that they can be tied together such that 
the surface is still a triangulation [GI. The partition function for the fluid membrane is 
given by including a sum over triangulations T in Cc so 

where TN runs over all possible triangulations with N vertices. This model is not necessarily 
very realistic as a model of real liquid membranes (e.g. soap bubbles) because liquids 
are almost incompressible and SG is apparently inappropriate-although it is really the 
compressibility of a large sample rather than of an individual molecule that is important. 
In the context of strings we will show later that it is most natural to consider this model in 
the grand canonical ensemble for which the partition function is 

This model is often called the ‘dynamically triangulated random surface’ or DTRS. 
Although our discussion of the motivation for these models has been based on concrete 

(albeit simplified) examples there are two aspects which are of the utmost importance in 
real condensed-matter physics which we have ignored. The first is of course the issue of 
self-avoidance; although the surface ensembles equivalent to the simplest string models 
are allowed to self intersect, something drastic will happen to a real membrane when it 
touches itself and a complicated constraint must then be added to (2) to exclude self- 
intersecting configurations. We will discuss briefly the differences caused by imposing the 
self-avoiding constraint. The second aspect is the subject of hexatic ordering [271, and 
its associated energy, in membranes [28]. This occurs in an intermediate regime when an 
almost flat crystalline membrane starts to melt; the hexatic phase is one in which there is 
still long-range order in the orientation of links but not in their lengths. Such phenomena 
have physical meaning when the links themselves represent real molecules (which scatter 
light for example). To discuss adequately the important subject of hexatic ordering in 
membranes would need a whole article of its own and from now on we will not consider 
it. 
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3. Surfaces, strings and quantum gravity 

The crystalline and fluid membrane models with extrinsic curvature are related to strings and 
to quantum gravity in two-dimensional Euclidean spacetime. A string is a one-dimensional 
object (as a particle is a zero-dimensional object) which, as time evolves, sweeps out a 
world sheet (as a particle describes a,world line). In Euclidean time this world sheet is 
just a surface embedded in the space in which_ the string propagate? A point P on the 
world sheet is labelled by intrinsic coordinates e = (cl, h) and (X , (g  ), fi = 1, .  , . , D )  
describesJhe position of P in the D-dimensional embedding space. The intrinsic metric 
tensor g ( e ) o b ,  ( a .  b = 1.2) determines the geodesic distance (i.e. the shortest distance if 
pou ar%conspined to move on the surface) ds, between two points whose coordinates are e and : + d$ through 

ds2 = gabdeadeb. (13) 

The quantum theory for the world sheet has a path-integral formulation [3] 

The functional integral JDg means summing over all configurations of the metric which are 
physically inequivalent so that each included configuration gives a different set of geodesic 
distances between points on the surface. For the theory to make sense the action must 
satisfy several constraints. Firstly, translation invariance in the embedding space requires 
that the action cannot depend upon the absolute location of the surface; hence it can only 
depend upon derivatives of X and not X itself. Secondly, it must be reparametrization 
invariant so that changes of variable 

which leave the physical configuration unchanged also leave S unchanged. Thirdly, the 
resulting quantum field theory in g and X must be renormalizable. Polyakov I291 argued 
that for a closed surface S must take the form 

s = d2:,&(gaba.x,abX, + KR-J (16) 

where g denotes det(g,b). Rex, is the continuum extrinsic curvature of the surface given by 

/ 
gQbV.A Vt.6 (17) 

where V is the covariant (with respect to general coordinate transformations (15)) derivative 
and A is the unit-normal vector to the surface. For general D, (17) is summed over the 
D - 2 independent normal vectors. 

If we write 

(18) 

with 
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then it is clear that Z,,, where go is a fixed constant metric, is related to the partition 
function of the crystalline membrane (10) by straightforward discretization of the world 
sheet into a regular triangular lattice; the derivatives a,X, are approximated by nearest- 
neighbour site differences in X (5) and the covariant derivatives VoA by nearest-neighbour 
triangle differences in A (9). How to deal with non-constant metrics and then with f Dg is 
not so clear but a remarkably elegant construction seems to work. In some loose sense it 
identifies a given triangulation (not, in general, regular) with a particular metric. Consider 
the triangulation in figure 4, and define the length of a path to be the number of links 
in the path. The geodesic distance between two points is then the length of the shortest 
path connecting them. For example, the geodesic distance A B  is 3. By changing the 
linkage of the triangulation we can change the geodesic distance; flipping the link X Y  
to the dashed link changes the distance A B  to 4. The basic hypothesis [U] is that, 
in summing over all triangulations, we are summing over all different sets of geodesic 
distances between points in a manner equivalent to integrating over the continuum metric 
(earlier a similar construction based on embedding manifolds in a hypercubic lattice of 
large dimension was proposed by Weingarten [301). Similarly, the number of points in the 
discretized version corresponds to the volume of the metric f d2t,& in the continuum. In 
integrating over g there is implied a sum over metrics of different volume and.hence 
in the discretized version we should sum over the number of points. Thus it can be 
argued that the grand canonical partition function of the DTRS (12) is, at least naively, 
a discretized version of Zseog, One can also argue that this model contains a remnant 
of the reparametrization invariance (15); the sum over triangulations ensures that the 
resulting physics cannot depend a priori on the features of any particular lattice (coordinate 
system) although it will depend on the existence of the lattices providing an ultra-violet 
cut-off. 

The partition function (14) may also be interpreted as D bosonic matter fields (the 
Xs) interacting with two-dimensional quantum gravity (for which the ‘universe’ is just 
the surface) in which the dynamical field is the metric g. There is no term in the action 
involving the metric alone because the two-dimensional equivalent of the Einstein action 
which describes general relativity in four dimensions is actually a topological invariant 
proportional to the Euler characteristic of the surface. In the case of conformal matter 
a great deal is understood about models of this type. The crucial quantity is the central 
charge c, the number of free (meaning not interacting with themselves, only with gravity) 
bosonic matter fields in the model. It is possible to construct models with many different, 
not necessarily integer, values of c and consider their interactions with gravity. For c 6 I 



3330 J F Wheater 

the effects of the interaction with gravity can be computed through the famous result of 
Knizhnik er a1 [31] (hereafter referred to as the KPZ result) and the model with K = 0 
and D = 25 is known to be consistently quantizable. However, for other c > I the KPZ 
result breaks down and makes nonsensical predictions which seem to imply that no smooth 
long-range behaviour is possible. At K = 0 the crystalline surface has D independent fields 
and so c = D; as we will see later, the DTRS does not lead to a well defined smooth surface 
but one which is highly irregular on the scale of the lattice spacing. At K z 0 the extrinsic 
curvature acts to suppress the irregular surfaces and the hope is that this model offers a 
way round the KPZ result and actually yields smooth continuum surfaces in embedding 
dimensions D > 1. 

4. Long distance behaviour and the continuum limit 

As we have seen, the lattice models are certainly discretimtions of the continuum systems 
and therefore provide an ultra-violet regularization which goes beyond perturbation theory. 
However it does not necessarily follow that, by studying the lattice model, we can find out 
about .the continuum one. The difficulty lies in the procedure by which we take the limit 
where the lattice spacing a -+ 0. Let us first discuss this for a crystalline surface on which 
we consider the correlation function G of some local field (i.e. X) dependant quantity $(Fi ) 

G=($O,0)4(0,0)). (20) 

Typically G shows exponential fall-off with distance 

G - exp (-mg) (21) 

where m, the mass, is the inverse correlation length in lattice spacings. Introducing the 
lattice spacing a we can write 

The physical intrinsic distance between the points (0,O) and (6 ,  0) is t h y s  = ea and the 
physical mass mgyr = ma-l. In taking the continuum limit we want to study successive 
approximations to G at fixed t P h y l  as the lattice spacing a -+ 0; in order for G to remain 
finite in this limit it is necessary that mphys -+ constant and hence that m = m,hy,a -+ 0. 
However, to get m -+ 0 there must be a second-order phase transition and it is a highly 
non-trivial matter whether the lattice model has such a transition. If it does not then 
the approximations made to the continuum model to get the lattice version have been 
too crude (as is in fact the case with several lattice versions of surfaces with extrinsic 
curvature [22,23]). Even if there is a second-order phase transition it does not follow 
that the effective continuum field theory is thaI naively obtained from the lattice model 
by doing an expansion in powers of a and retaining the leading terms in the a -+ 0 
limit. 

In considering the DTRs there is one essential difference. The sum over all triangulations 
means there is no sense in a correlation function of the form (20) because there is no 
fixed geometrical relationship between the two points. Instead, correlation functions are 
defined by considering surfaces with boundaries. For example a one-point function is given 
by summing over all surfaces with a single boundary y fixed in the embedding space 
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as shown in figure 5 where we have chosen the boundary to be a circle. Formally we 
have 

where the sum over triangulations is now over those with a boundary y and the 
constraint C fixes the n points lying on y to fixed positions in the embedding 
space. Letting A be the area in lattice units of the circle enclosed by the boundary, 
U be the string tension (surface tension) and a be the lattice spacing we expect 
that 

Gi -exp(-uA) = exp(-(ua-')(Aa')) = exp(-UPhysAphys) . (24) 

In the continuum l i t  a + 0 we need d p h y .  to remain finite and hence d = 
Uphyshy.a2 + 0. The two-point function is given by summing over all surfaces with two 
fixed boundaries yt and M as shown in figure 6. It is usually convenient to shrink 
y~ and y2 to points a distance L (in the embedding space) apart for which we gett 

~2 - exp(-mL) = exp ( - (ma- ' ) (~a))  = exp (-mphysLph,) . (25) 

In the continuum limit a --f 0 we need mphys to remain finite and hence m = 
mphy,a + 0. Note that to get a sensible continuum limit it is not enough to have 
U ,  m + 0 at a critical point but they must do so keeping the ratio uppbys/mihys = u / m 2  
constant. 

Y 

Figure 5. A one boundary surface. Figure 6. A two boundary surface. 

Understanding the phase structure of these models is crucial to determining the effective 
field theory that governs any non-trivial long-distance behaviour. The rest of this article 
addresses in tum the following two questions. 

(1) Does the crystalline surface have a second-order phase transition and if so what is the 
corresponding continuum field theory, FI? If 4 is a conformal field theory is its central 
charge greater than one? 

(2) Does the dynamically triangulated model also have a second-order phase transition 
and, if so, is the continuum field theory describing the critical point equivalent to FI 
interacting with gravity analogous to the way that the KPZ result describes this interaction 
when c < l? 

t Although the symbol m is used for the mass gap in both models, the quantities are unrelated, which one is 
meant will always be clear from the context. 
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5. The crystalline surface 

5.1. Special cases 

As we discussed in section 2, and generalizing to D embedding dimensions for the moment, 
the partition function for a crystalline random surface is given by 

and expectation values are given by 

The expectation values of some quantities can be calculated exactly for all values of K 

because the extrinsic curvature is invariant under the global rescaling 

x ( i )  + p-’”X(i) vi. (28) 

Making this rescaling in (26) gives 

z(g, K )  = p-(N-’)D’ZZ(l, K )  (29) 

and, therefore, 

a (N - l)D 
28 

(Sc) = --In Z(p, K )  = 
ap 

and so on. For approximately regular surfaces we argued in section 2 that 

(SO) ( A )  (31) 

so that the average area of the surfam in units of lattice spacing squared is proportional to 
the number of points in the lattice. Note that in the limit N + CO the ensemble becomes 
almost microcanonical in that 

and the fluctuations in the area become less and less important; this motivates an analytical 
approximation that we will look at later. 

At K = 0 the model is of course exactly soluble. X has the two-point function 



Random surfaces: from polymer membranes to strings 3333 

where L ( i )  deytes the lattice Laplacian in momentum space and the sum runs over all 
lattice momenta k except (0,O) (so that the &function constraint is satisfied). The simplest 
measure of the shape of the surface is given by the mean-square radius, often called the 
gyration radius squared, 

When the number of points N is very large we can replace the sum by the corresponding 
integral and use l / f i  for the lowest allowed momentum to find 

It is convenient to introduce an exponent, commonly called dH or the Hausdorff dimension, 
such that 

In this case we have dH = CO. Now dH = 2 is the behaviour expected of a smooth surface- 
consider the surface of a sphere for example. As dH increases the surface becomes more and 
more convoluted until at du = 00 it is space-filling in any embedding dimension-it looks 
like a very crumpled up sheet of paper. So at K = 0 the model is very far from being one 
of smooth surfaces as the dominant configurations are all crumpled on the shortest available 
distance scale. What happens as K increases? The model is no longer analytically solvable 
and there are three ways forward. The first is by rigorous statistical mechanics methods, 
the second by approximate continuum calculations and the third by numerical simulation. 
All yield some insights into the properties of the system and we consider them in turn. 

5.2. A toy model 

A very simple model which has some of the properties of the crystalline surface was 
suggested by David and Guitter [28]. Consider a square L x L lattice in embedding 
dimension D = 2. The elementary squares of the lattice are rigid so that the only possible 
changes are folds along the lines of the lattice grid. For a given configuration, suppose we 
do all the folds along one direction followed by those along the other. Each fold costs KL 
in energy so the partition function is 

If K > 0, then for large L 

2 2: 1 + 2Le-KL (38) 

and Z + 1 as L + 00; only the unfolded configuration counts and the surface is smooth. 
AtK=O 
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and all the configurations contribute equally. We see that there is a phase transition at 
K = 0. It is straightforward to calculate the expected number of folds in each direction 

When K > 0 the mean-square extent is proportional to Lz so d~ = 2. At K = 0 the 
folds in one direction are just a one-dimensional random walk so the mean linear extent is 
O C A )  and dH = 4 at the critical point. When K < 0, every possible fold is made and the 
mean-square extent is 1. 

One problem with the above model is that the total number of configurations is low; 
indeed the average entropy per site 2L log2/Lz is zero. This defect is remedied in a similar 
model based on a triangular lattice which was proposed by Kantor and Jaric 1321; however, 
this model still yields a phase transition at K = 0 . 

5.3. Some rigorous results 

Jonsson [33] has proved using a variant of the classic Memin-Wagner argument that, for all 
K ,  (X’) 2 log N so the surface can never be more crumpled up than its K = 0 state-a result 
which is intuitively obvious but nice to be able to prove. At very large K we expect to find 
that folds and crumples are suppressed in the partition function. However, there is no real 
proof that dH = 2 at large K. Fortunately, numerical simulations provide incontrovertible 
evidence that this is the case so it makes sense to enquire about the intermediate behaviour. 
It turns out that by considering the behaviour of the tangent-tangent correlation functions 
we can categorize the possible behaviours quite strictly 126.221. The treatment described 
here follows the latter reference. 

Suppose that the lattice has periodic boundary conditions with period L where L2 = N, 
define the tangent vector 

t l tF , - t l ( t l ,  B z ) = X ( h + l ,  m - X ( t 1 ,  42) (41) 

and introduce the tangent-tangent correlation function 

G11(t,t2) = (ti(0, h)*ti(5> (2)) . (42) 

So long as the ensemble is Euclidean invariant, G I  is independent of (2 which we set to 
zero. As we will show GII has behaviour which is closely related to the long-distance 
properties of the surface. 

It is useful to introduce a definition of the mean-square radius which differs slightly 
f” (34), 

R,’ = (IX(L/2,0) - X(0,0)1*) . (43) 

Then GII is related to it  through 
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The periodic boundary conditions imply a constraint on GI! because the sum of tangent 
vectors round a closed loop is zero; this gives 

L-I 

CGII(B.0) =o. (45) 
I=O 

This constraint implies that GI, must be negative for some values of its argument. We h o w  
that GI, takes its maximum value at = 0 since ( t t ( i ) .  t l ( z ' ) )  6 ( tr (<) .  t l ( g ) )  and 
from (30) that this maximum value is O(1). We therefore make the plausible assumption 
that G I I ( ~ ,  0) falls from its maximum value at 6 = 0, that it goes negative at 5 = 60 and 
remains negative until 5 = L - t o  when it becomes positive again (this assumption is borne 
out by the numerical simulations). Assuming that the system has only one relevant distance 
scale we expect that 

to a m-' (46) 

where m was introduced in (21). We can distinguish a number of cases. 
(1) G I I ( ~ , ~ )  > 0 for 5 < 60 where 

arbitrary system size we have 
is independent of the system size L. Then for 

L 

-Eo 
Gll(5. 0) < E (47) 

where E is a constant independent of L.  It then follows that 

For large enough L and 60 << 5 << L -50 this forces the slowest permissible fall off of 
Gll to be 

Gli(5, 0) W + (L - C)-'*) (49) 

where E' is another constant independent of L and E < 1. Combining (44), (47) and 
(49) then gives 

(4)'  R,' * 2E60 + const 

or that dH = 4/~. As we have already mentioned, RZ > const log(L), so that in fact 
the range of E is limited to 1 > E 2 0. 

(2) G11(6,0) z 0 for e < (0 where 50 - Lt-T with 1 3 q 3 0. Note that q < 0 is not 
possible because for large enough L there would be no region in which GII < 0 and 
(45) would be violated. Similarly 7 > 1 forces a11 Gll(< > 0,O) to be negative for large 
enough L which is essentially the previous case with 50 = 1. We take q = 1 to mean 
60 - log L. Now we have 
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where F is a constant independent of L. It then follows that 

For large enough L and &I << 6 << L - this forces the fall off of GII to be 

G I I ( ~ ,  0) % -F'( t -q  + (L - e ) -q )  (53) 

where F' is another constant independent of L. Combining (44), (51), (53) then gives 

Rl % 2FL2-" + const - (3- (54) 

so that dH = 4/(2 - q) .  Thus for rl = 1 we have dH = 4 and as q decreases to 0, dH 
decreases to 2. 

At K = 0, Gll can be calculated and shows the behaviour discussed in (1) above with 
t o  % 1. The exixinsic curvature term in the action tends to smooth the surface so as 
K increases we expect that $0 will increase too. There. are then two possibilities 1261. 

(a) eo satisfies (1) and remains finite for all K < CO. In this case dH = CO for all K and 
there is no phase transition. 

(b) At some coupling K = K~ the behaviour of & changes to that described in (2) above. 
There is a phase transition and dH jumps to a value in the range 2 Q dH < 4. There are 
three ways this can happen. 

(i) dH jumps to 2 -= dH < 4 at K = K~ then continuously evolves to dH = 2 at K = CO. 

(ii) 2 -= d~ S_ 4 at K = 
(iii) dH = 2 for K 2 K ~ .  

Numerical simulations (see. section 5.5) strongly suggest that there is a continuous phase 
transition and that for K > K ~ ,  d~ = 2. There is no evidence that dH # 2 at K = K~ but 
analytic approximations [28,32], which are decribed in the next section, favour (ii) with 
dH - 3 at K = K~ for surfaces in three dimensions. 

5.4. A continuum approximation 

The non-polynomial nature of the lattice curvature action makes the model very difficult to 
handle analytically. However, the observation we made in section 5.1 that, as the lattice size 
N + CO, the ensemble is dominated by configurations of fixed area allows us to construct 
a continuum model which at least looks similar and can be used as the basis of analytic 
approximations. Define the coordinate system of the surface so that atX and azX are 
mutually perpendicular unit tangent vectors 

and dH = 2 for K t K ~ .  

a.x . abx = (55)  

It follows from this that the normal vector 

i~ = alx x a,x (56) 
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is also a unit vector so the extrinsic curvature can be written 

/d2ga,A.anA (57) 

which, by liberal application of (55) and integration by parts, reduces to 

j dzt a 2 x  . a 2 x .  

Thus we may consider the patition function [28] 

( 5 8 )  

z = D X D ~  exp (-Jd28 (Eazx .azx -iab(a,x .abx -6.b))) J (59) 

where the Lagrange multiplier field A is introduced to impose the constraint (55). An 
ordinary perturbation expansion for this model does not exist but it is possible to do a large 
D expansion for which purpose we rewrite K = DK' and A = DA'. Then 

z = DX DA' exp -D d28 (qx . ( ~ ' a ~  - za.h;,ab)x + h:b&b) . (60) s I s  I 
Integrating out the X field yields 

In the D + CO limit we can now do a saddle-point calculation, looking for a constant 
solution for I' which minimises Se&') and then examining fluctuations about that solution. 
For constant A' the effective Lagrangian is simply 

so the saddle-point equation is 

from which it is easy to show that 

(64) 

where A is the ultraviolet cut-off in the momentum integral. Expanding about this non- 
trivial saddle point by putting 

= i a b  (65) 

A:b = Kt i & b m  2 m2 = 1\2e-8nu'fD 
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k\ Figure 7. Feynman rules for the action (€0) expanded 
\ about the saddle point (64), 

leads to a sensible perturbation expansion in powers of D-]. The Feynman diagrams for 
this expansion are made up of three elements. 

(i) The X propagator figure 7(a) given by 

1 
K’(p4 + m2p2) ’ 

(ii) The propagator for the ‘phonon’ field x, figure 7(b) 

(iii)The vertex, figure 7(c), 

This theory is renormalizable by power counting and has the important feature that the x propagator has a long-range component no matter what the value of K‘. 
The calculation of the renormalization group p function including 1/D corrections 

requires the evaluation of  two loop diagrams and is given in [ZS, 341. The renormalization 
group B function for the coupling a = 1 f ~ ‘  is given by 

2 const 
D 

Thus at D = CO there is only one zero of the B function, at a = 0, and at large distance 
scales the effective inverse rigidity flows to infinity. The structure of the surface is always 
controlled by the LY = CO (K’  = 0) fixed point and it is always crumpled. By contrast at 
finite D the p function has an extra zero at LY* = 8rr/D. When (Y z a* the coupling 
flows towards a = CO at large distance scales and the surface is crumpled. However, when 
01 < a* it now flows towards a = 0 (K’  = CO) and at large distance scales the surface 
is smooth. At a = a’ there is a second-order crumpling transition and precisely at the 
transition the membrane has d~ = ZD/(D - 1) at first order in 1/D. The existence of a 
smooth phase implies the spontaneous breaking of the O(D) invariance of the action (59) 
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at the phase transition in apparent contradiction of the Mermin-Wagner theorem. However, 
the long-range component of the phonon propagator which occurs for all K' invalidates the 
Mermin-Wagner proof. The results of these calculations are perfectly consistent with the 
general arguments of section 5.3. 

An alternative approach to the problem is described by Le Doussal and Radzihovsky 
[35]. They use a self-consistent screening approximation to calculate the properties of a 
surface in the smooth regime where at first approximation it is flat and corrections arise 
from out-of-plane fluctuations. For D = 3 they find that dH = 2.73 which is close to the 
David and Guitter result. Interestingly this approach also allows the calculation of the upper 
Critical dimension Doc - 4.98 above which the imposition of a self-avoidance constraint 
does not affect the crumpling transition. 

5.5. Numerical simulation 

We have seen that some features of the crystalline random surface can be understood 
analytically. Nonetheless, most of the central questions such as the existence or otherwise 
of a crumpling transition remain unanswered and numerical simulation has played a large 
part in providing OUT present understanding. In practice nearly all the numerical results are 
obtained on surfaces embedded in D = 3 dimensions. 

m 

0 Figure 8. The zeroes of the crystalline surface 
correlarion function GI as a function O ~ K  for a . 7  0.72 0.74 0.76 0 . 7 8  0.8 0 . 8 2  0 . a 4  

K dierent lattice sizes. 

As discussed in section 5.3 the tangent-tangent correlation functions yield a great deal 
of information about the system. Since G11(<) must become negative at large 6 ,  GII(.$o) = 0 
for some 6 0 .  Supposing the model has only one relevant length scale, the mass gap in the 
crumpled phase, m, satisfies 

on an infinite size system. However, on a finite size system with L lattice spacings in 
the 1 direction the value of .$o cannot exceed L/4  [22] and when the 60 appropriate to 
L + 03 approaches L / 4  we expect to see finite-size effects. Figure 8 shows .$o extracted 
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from measured correlation functions Cl, on I@, 32* and 64' systems and clearly illustrates 
the existence of these finitesize effects [36]. To unravel them requires some model; it has 
been known for some time [22] that the correlation functions in the crumpled phase are well 
described at long distances by supposing that the system is essentially a free-field theory 
and that in momentum space 
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(69) 

where L ( i )  is the lattice Laplacian. Fitting (69) to the data in the region where GII < 0 
yields the values of m shown in figure 9. Provided &J is far enough away from e;". the 
values obtained from the different lattices merge and are seen to be in very good agreement. 
The correlation length exponent U is found by fitting by the usual form 

m - ( K ~  - K)" (70) 
which gives U = 0.89 i 0.07 and K~ = 0.821 i 0.005. More information can be extracted 
from the correlation functions. Figure 10 shows GII on a 64' lattice in the region where it 
is negative together with the best fit of (69) for a number of K values close to the transition. 
At large enough distances, the correlation functions are dominated by the L ( j ) - '  piece in 
(69) which leads to GII - -t-' implying that E = 0 in (50) and hence that for K e K ~ .  

dH = CO. Up to K = 0.81 the data is in very good agreement with this behaviour of GII 
confirming that dH = CO for K e K ~ .  The arrow shows tom if the two point function 
takes the form of (69) and we see that the intercept for K = 0.82 falls well beyond to"" 
and (69) no longer accounts for the long-distance behaviour of G I , .  That the two point 
function suddenly switches from following (69) to something completely different is really 
the most convincing single piece of evidence for the crumpling transition while the steady 
progression of m towards zero suggests that the transition is second order. 

Complementary information is provided by the specific heat 
1 

c = - ( ( S Z )  N - ( S y )  - 3 2 

which is shown in figure 11 for various lattice sizes [36]. The peak height grows steadily, 
and its location moves toward smaller K ,  with increasing system size N ,  a classic indication 
of a second-order phase transition. The results for the 64' lattice are well fitted by the 
standard divergent behaviour 

c = a  + b(Kc - K ) - = +  .. . 01 = 0.2&0.15. (72) 
This implies that 01 - 2 + ud = 0.02 i 0.3 in reasonable agreement with the scaling relation 
01 = 2 - ud. 



3342 J F Wheater 

I I 

Figure 12. to as a function of lanice size L for K values in the vicinity of the tmnsition. The 
broken curve shows the best Et to CO - L'-n. 

A finite-size scaling analysis of the specific heat assuming the scaling relation 01 = 2- ud 

(73) 

where o = a/u and L is the linear size of the system gives a much larger value for a [36], 

U = 0.76 f 0.05. (74) 

Other studies of this kind [37,40] have found U = 0.78 ZIZ 0.02 and U = 0.6 i 0.2 which 
is in fair agreement with [36]. However, these results seem to differ systematically from 
those obtained from the 64* lattice alone which does rather suggest that most of the small 
lattice data is not in the asymptotic regime. 

It has been shown fairly conclusively that dH = 2 in the smooth phase f22,37]. This 
was done in two ways; firstly by examining GI, again and secondly by studying the N 
dependence of ( X z ) .  

Figure 12 shows the behaviour of no with L for couplings close to the phase transition 
1221. (Unfortunately this simulation was done a different way to the others and there is an 
a priori unknown renormaiization between the coupling constants so that here the critical 
coupling is about 0.88.) It is clear from the picture that there is a dramatic change in 
behaviour around K = 0.87. Below this coupling no seems to be saturating as L increases- 
precisely what we expect in the crumpled phase. On the other hand, at K = 0.89 the 
steady growth of no without apparent limit contrasts stmngly with the behaviour at smaller 

and the asymptotic behaviour 

C,, = a' + b'Lo + . , . 

a = 0.47 i 0.1 
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couplings. Of course this does not prove the continued growth for arbitrary L but it can be 
analysed according to (54) to provide an estimate for dH.  A fit of no - L'-" (which is the 
dotted curve in figure 12) gives a best value of q = -0.06 with q = 0.07, 0.13 at one and 
two standard deviations and hence 

dH < 2.07 or 2.14 (75) 

at one and two standard deviations respectively. This is fairly good evidence that the system 
jumps to dH = 2 at the crumpling transition. 

The alternative method is to fit measured values of (X') to the form 

This was done for K values just in the smooth phase by [22] on N = 32'. 64', 128' giving 
the estimate d H  = 2.1 and by [37] on N = 8', 12', 16'. 24', 32' giving d~ c 2.38. Thus 
the behaviour of (X') clearly supports the conclusion that d" = 2 in the smooth phase. 

It is not clear that the critical point is governed by a conformally invariant theory. The 
results for the long-distance behaviour of the correlation functions [36] suggest that the 
effective action might take the form 

Sef = 1 -1/2m(~) 'X.  A X  + X * A2Xd2c (77) 

where A is the Laplacian. This action is not classically or quantum mechanically 
conformally invariant. However, there may be corrections to (77) in the form of interaction 
terms which existing numerical simulations are not accurate enough to pick up. Whether a 
theory is conformally invariant or not it is always possible to look for finite-width behaviour 
for the free energy of the form 

Ac f = f m + - ,  L 

If the theory is conformally invariant then A is a computable constant which depends only 
on the boundary conditions, c is the central charge and L is the strip width [38]. If the 
theory is not conformally invariant then one may still observe behaviour of the form (78) 
but c will not be the central charge; on the other hand entirely different behaviour such as 
L-'/' might be observed. If the effective action at K~ is precisely given by (77) then it is 
easy to calculate f analytically and find that it does behave according to (78) with c = 2 0 .  
On the other hand, [39,40] have measured f directly and find behaviour consistent with 
(78) but with c lying between zero and one. Whether or not the critical point is conformally 
invariant there is an apparent inconsistency here. The most likely resolution is simply that 
(77) is not exact but that there are interaction terms as well: it is certainly the case that more 
work needs to be done before the exact nature of the crumpling transition is identified. 

When self avoidance is introduced the crumpling transition for tethered surfaces (6) [41] 
and for the model considered here [42] disappears for D = 3,4; the surface has d~ = 2 for 
all values of K and there is no critical behaviour. However, when 0 = 5 it has been found 
that the crumpling transition reappears [43]! This is remarkably close to the upper critical 
dimension D,, = 4.98 predicted by the calculation of [35]. The absence of a diverging 
correlation length for D = 3 ,4  makes the construction of a continuum limit impossible and 
so the models appear not to be suitable discretizations of continuum surfaces: on the other 
hand, as descriptions of possible real crystalline membranes they are perfectly in order. 
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6. The fluid surface 

6. I .  Analytic calculations 

A large-D continuum calculation, analogous to that for the crystalline surface described in 
section 5.4, can be done for the fluid surface [29,44]. The difference is that there is no 
longer the fixed-area constraint (32) and instead there is an additional functional integral 
over the metric degree of freedom g. In the conformal gauge gab = $be@ where Q is often 
called the Liouville field. Schematically we get, after integrating out the X fields 

2 = DAD$exp(-DS,~(A,Q)) . s (79) 

As D + 00 the integral can btevaluated by the saddlepoint technique and a translation 
invariant ansatz A ( ? )  = Ao, @ ( e )  = Q0 is made to minimize Sea. This leads to the beta 
function 

1 
4rr K 

f i (0 l )  = -E D 2  + ,  . . E = -  

(recall that Sea already depends on an ultra-violet cut-off because the X fields have been 
integrated out). Corrections to this approximation are obtained by integrating over small 
fluctuations in Q and A. David and Guitter [45] showed that for surfaces with small enough 
physical string tension the matrix of second derivatives 

s2s.w \ 

necessarily has some negative eigenvalues if D > 1 so that the integral over small 
fluctuations is infinite. The instability is associated with the presence of the Liouville 
field; this is a generic problem in string theories at K = 0 where the kinetic term in the 
effective action for 4 becomes negative if D is large enough. In the present case the result 
tells us that the true ground state of the system at large D breaks translational invariance and 
is presumably very complicated; it is temptins to suppose that the problem is related to the 
appearance of the branched polymer configurations which are discussed in the next section. 

It has long been held [91 that the absence of massless 'phonon' modes (see section 5.4) 
in the fluid surface means there is no possibility of evading the Memin-Wagner theorem 
and hence no phase transition at finite K (so the beta function (80) is always asymptotically 
free unlike the crystalline membrane case). At long distance scales the extrinsic curvature 
term becomes irrelevant no matter what the value of EO and the surface is always crumpled. 
However, we will shortly see that the results of numerical simulation of the DTRS are not 
so unequivocal. 

6.2. Thermodynamic limit of the DTRS and the string exponent 

The most basic result is the existence of the grand canonical partition function (12) for large 
enough f i .  Exploiting the fact that S., is bounded and that (on a torus) the number of links 
is three times the number of points we get immediately that 

2(fi, K, 0) 2(fi - 6 4  0.0). ( 82) 
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Integrating out the Xs we obtain 

where IT is the incidence matrix of T and det' indicates that the zero eigenvalue is 
suppressed. It is a standard result that det' IT is equal to the number of spanning trees 
t that can be drawn on the graph T and is therefore greater than or equal to one. The 
number of triangulations in TN is known to be bounded by ea" for some constant a [46] 
and hence 

Z(P, 0, p )  < Ce-~Np-"-')D/2eaN. (84) 
N 

It immediately follows that by choosing @ large enough the sum over N can be rendered 
finite. 

The divergence of 2 as p decreases to its critical value p&?, K )  is parametrized by an 
exponent ysm which controls the approach to the thermodynamic limit. Writing 

we suppose the asymptotic behaviour 

Z(K, p, N) - N-'+""ebN (86) 

which leads to the result that the expected number of points in the surface diverges as 

@" - (P - IL~)-" ' .  (87) 

This exponent is important for at least two reasons. Firstly, unlike the critical free energy 
density pLc, it is believed to be a universal quantity; its value is determined only by the 
universality class of the dynamics. The second reason is that it can be argued that on a 
manifold of arbitrary topology ysm depends on the Euler characteristic X E  of the manifold 
through 

(88) 

whereas pc is independent of topology. Thus the exponent controls the behaviour of 
the system when a sum over topology (which defines string perturbation theory and is 
presumably necessary in a full theory of quantum gravity) is included [47]. In the case of 
c < 1 conformal matter coupled to the random triangulations these results are known to be 
true and the value of ~ ~ ~ ( 0 )  is computable r31.481. 

XE 
Yslr(xE) = 2 Yso(0) + 2 - XE 

Note that this result depends only upon c, confirming its universal nature, and that it fails 
if c > 1 yielding a complex exponent. The reason for the failure is that a self-consistent 

t A spanning trees is a connected set of links such that every site is visited and that lhere are no closed Inops. 
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calculation has picked the wrong ground slate. At present no analytical method of calculating 
for c > 1 is known; some effort has been made to measure ysu for the DTRS when K = 0 
[49] but, apart from a rigorous upper bound of f [4], little is known about it in the more 
interesting K 0 region. 

There is one other observation that follows from (83) concerning the dominant 
configurations in the partition function for small K .  As D increases, those configurations 
with !he smallest det' IT become more important provided there are a significant number 
of them. One such configuration is the branched polymer of which an example is shown 
in figure 13; the tubes are typically only a few links in circumference. It is intuitively 
clear that such a triangulation has a relatively small number of spanning trees and hence a 
small determinant and it is also clear that there is a very large number of distinct branched 
polymers. The value of D where these configurations start to dominate is unknown but it is 
tempting to suppose that D = 1 is the critical value and that the onset of branched-polymer 
dominance coincides with the failure of Kpz (see I501 for a more detailed discussion). As 
we discussed briefly in the continuum context in section 3, the hope is that the extrinsic 
curvature will suppress these very far from smooth surfaces at large enough values of K .  

Figure 13. A branched polymer configuration. 

6.3. Correlation functions 

In section 4 we saw how the study of correlation functions and extraction of the mass gap 
and string tension is crucial to understanding the properties of the system. The mass gap 
and string tension are defined in the grand canonical ensemble but some analysis is much 
more straightforward in the canonical ensemble, as is numerical simulation. It is therefore 
convenient to express them in terms of quantities measurable in the canonical ensemble 
[HI. In the following we will denote by V d  a d-dimensional boundary of volume V d  (so 
that for GI we have v d  = A and for Gz, Vd = L); the boundary will contain n fixed points 
and the rest of the surface N - 1 points that are free to move. The Gibbs free energy '2 
and the Helmholtz free energy F are related by 

from which we get 
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and 

where the expectation is in the grand canonical ensemble. In the thermodynamic limit we 
make a saddle-point expansion for the sum over N and find that to leading order in its 
location, i7, 

( N )  =i? 

Differentiating (24) and (25) with respect to A and L respectively this result relates the 
string tension and the mass gap to quantities measurable in the canonical ensemble by 

and 

Now consider the canonical ensemble with some d-dimensional boundary of d-volume 
v d .  The partition function is given by 

where C imposes the boundary constraints on the n boundary points. Rescaling all the X s  
by X -+ AX‘ and exploiting the scale invariance of S, we find 

Z ( K ,  f i ,  N ;  v d )  = A “ - ’ ) D Z ( K ,  A z o ,  N ;  h ” V d ) .  (97) 

Differentiating the logarithm of this relation with respect to A and putting A = 1, j3 = 1 
yields 

(98) 
a 

0 = ( N  - l )D - 2(Sg) +dVd-F(K, N ;  v d )  a v d  

whence (d = 2) 

2 (SG) - ( N  - l )D  
2A 

U ( K ,  N ,  A )  = 

and (d = 1) 

2 (So) - ( N  - l )D 
m(K, N ,  L )  = 

L 
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and (d = 0) 

It is now straightforward to prove that at K = 0 the string tension is non-zero (this was 
originally proved in the grand canonical ensemble [52] but here we use the canonical 
ensemble). Consider the canonical ensemble with boundary loop of area A and let 
X ( i )  = Xo( i )  + z(i) where Xo(i)  is that location of the site i which minimizes SG 
on the particular triangulation 7. Then 

and, because X ( i )  = XO(i )  on the boundary points by definition, z(i) = 0 if i is a 
boundary point. Now the sum of the squares of the length of any two sides of a triangle is 
greater than four times its area so 

The remaining ensemble defined by the zs has Vd =O so, by (IOl), 

D 
(SG) 2 2.4 + (N - 1’7 

whence 

0 2 2 .  

Extending the argument to positive K introduces an extra term in (104) which is negative 
and hence, as was shown in [53], it is possible to get U = 0 for some K = K~ # 0. 

The situation for the mass gap is different. Following the same argument as above we 
again need to evaluate min(Sc). It is obvious that this will occur when all points collapse 
onto the straight line joining the two boundary points. There is a tube-like triangulation 
whose circumference is just three links for which the average link length is - L / N  and 
hence 

In the thermodynamic limit N + 00 and hence m + 0. We expect this behaviour to persist 
for increasing K at least until any phase transition is reached. 

We have seen that in order for m, U + 0 it is necessary @ut not necessarily sufficient) 
to have K > 0. Unfortunately, it is much more difficult to prove that, for K + K ~ ,  the mass 
gap and string tension vanish such that u / m 2  tends to a constant. There are no analytic 
results available on this point and such information that we have comes from numerical 
simulations. In order to interpret the results of the numerical simulations that we will 
discuss in the next section it is useful to consider the possible scaling behaviour of the mass 
gap and the string tension [SI]. In the thermodynamic limit, where /I + / I ~ ( K ) .  we expect 
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where u ~ ( K )  might vanish at K~ and d(K) is a regular function. Supposing that the string 
tension does vanish somewhere then, in order to get u / m 2  + const in the thermodynamic 
limit, we need 

m(PL, K )  = e(K)(w - L L ~ ( K ) ) ” ~ ~ )  (108) 

where e(K) is a regular function. Using (94) and (95) we can relate this behaviour to the 
canonical ensemble and obtain 

and 

The results (log), (110) tell us how the string tension and mass gap measured in the 
canonical ensemble using (99), (100) are expected to scale in the thermodynamic limit if 
there is a non-trivial critical point. 

6.4. Numerical simulation 

The numerical simulations provide information about bulk quantities such as the specific 
heat and the behaviour of loop correlation functions which determine the mass gap and 
the string tension. The difficulties associated with simulating the dynamically triangulated 
systems are formidable. Earlier simulations [54-561 suggested that there is a crumpling 
transition similar to that in the crystalline surface but as larger system sizes have beeen 
studied the transition has become weaker. The largest system sizes that have been studied, 
N = 2304, are smaller than for crystalline surfaces. This alone makes the identification of 
finite-size effects and extraction of the infinite volume limit more difficult. 

Four recent papers have reported results for the bulk thermodynamic quantities which 
are in broad agreement although there is some spread in the location of the peak in the 
specific heat [51,57-591. As for the crystalline surface, the internal energy of the system is 
continuous and there is no evidence for a first-order transition. Figure 14 (which is taken 
from [Sl] whose h is the same as our K )  shows the specific heat which displays a peak 
at K w 1.4. However, the nature of the peak is very different from the crystalline case 
because, although it grows rapidly with N for small lattices ( N  < 144), at larger N values 
the growth abates and there is no evidence that the peak height diverges as N + 00; indeed 
the results of [59] show that the peak height has saturated at N = 576. There is insufficient 
data even to fit the asymptotic behaviour of C,, to (73) and fits of the standard divergent 
behaviour are impossible leaving us with the likelihood that 01 < 0 which would account 
for cusp-like behaviour of C but no more definite information. 

Figure 15 shows the string tension, measured in a simulation using (99) at several K 

values, plotted against A / N  [51]. When K is well below the region where the peak in 
the specific heat occurs it seems clear that the string tension is tending towards a finite 
value as A / N  + 0. However, as K increases the limiting value is getting smaller and at 
K = 1.5 there is no evidence that the curve is flattening out for the values of A / N  at which 
measurements were possible. The data points in figure 15 also show a steady progression 
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Figure IS. The string tension of the ms plotted 
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r various system sizes [511, 

in U at fixed A / N  as N increases which allows the finite-size effects to be controlled by 
extrapolating N -+ 00 at fixed A / N .  Using (109) the exponent v is estimated to be 

0.38 c U ( K  = 1.5) < 0.42. (111) 

Figure 16 shows the mass gap, measured in a simulation using (100). plotted against L / N  
at the same K values. This time we see that, as expected from (110), m appears to be 
falling to zero as L / N  + 0 no matter what the value of K. Fitting (1 10) to the data at 
K = 1.5 yields U = 0.417 i 0.007 which is within the range implied by the string tension 
results (1 11); accordingly the simulation data is consistent with the ratio u/mZ being finite. 
However, it should be borne in mind that these s ~ n g  tension measurements were made on 
lattices of N = 576 and smaller; this is precisely the lattice size at which the specific heat 
saturates and maybe U saturates at a finite value too. 

Measurements of R; suggest that in the critical region 

Ri N N2fdH (112) 
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Figum 16. The mass gap of the DIRS plotted against 
t = L J N  for different .4 (= x )  values and various 

t system sizes [St] 

0 N-144 
0 N-256 

0 N=144 
V N-256 
A N-400 

I,.,.,., 

10 -1  

with dH > 3.4 [51] or dH - 4 [57]. Unfortunately, this is consistent with the dominant 
configurations being the branched polymers discussed in section 6.2 and it remains to be 
seen if a genuine smooth surface is obtained at K ~ .  

The latest numerical data is consistent with there being a phase transition at K = 1.5 
and with both o and m vanishing at the transition with a finite ratio u / m 2 .  However, 
the evidence for the transition is nowhere near as conclusive as for the crystalline surface. 
The situation is complicated by the fact that, if the transition does exist, it must surely be 
third (or higher) order and the existing data is too sparse for a precise study of such a 
phenomenon. It has also been pointed out by [57] that the results look suspiciously similar 
to those obtained in other lattice field theory models which are known to have cross-overs 
rather than genuine phase transitions. 

The effects of self-avoidance have also been studied for the DmS [42,60]. Unlike those 
of the crystalline membrane the critical properties of the DTRS (if that is what they are) 
seem to survive the introduction of self-avoidance but again the very small lattices involved 
leave the interpretation of the results open to doubt. 

7. In closing 

The existence of a crumpling transition in the crystalline surface is well established. 
However, there is as yet no first principles proof of this, we still do not know the critical 
exponents very accurately and there is considerable uncertainty over the properties of the 
effective field theory at the critical point. The difficulties are compounded by the fact 
that the model is. at least naively, non-unitary because of the higher derivative terms in the 
kinetic part of the action and less is known about the classification of non-unitary conformal 
field theories in two dimensions. From the numerical point of view further progress could 
probably be made by renormalization-group studies of the model and the availability of 
ever more powerful computers. Nonetheless, progress would undoubtedly be made more 
quickly if the conceptual framework for these transitions were clearer. 

In the case of the fluid surface it is still not clear whether there is a phase transition 
at all, let alone its detailed features. If there is in fact no transition then a continuum 
string (or string-like object) embedded in D = 3 dimensions is probably impossible without 
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introducing fermionic degrees of freedom into the problem. A rigorous proof that the string 
tension does, or does not, vanish at a finite value of K would be a big step forward. 
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